Exercise 137

For the following exercises, P is a point on the unit circle. a. Find the (exact) missing coordinate value of each point and b . find the values of the six trigonometric functions for the angle θ with a terminal side that passes through point P. Rationalize denominators.

$$
P\left(x, \frac{\sqrt{7}}{3}\right), x<0
$$

Solution

The given point P on the unit circle is shown below. $x<0$ means that it's in the left half.

Zoom in on the right triangle formed by $P . \theta$ is the counterclockwise angle from the positive x-axis.

The hypotenuse has a length of 1 because P is on the unit circle. The sides of a right triangle are related by the Pythagorean theorem, and this allows us to determine x.

$$
\begin{gathered}
x^{2}+\left(\frac{\sqrt{7}}{3}\right)^{2}=1^{2} \\
x^{2}=1^{2}-\left(\frac{\sqrt{7}}{3}\right)^{2} \\
x^{2}=\frac{2}{9} \\
x=-\frac{\sqrt{2}}{3}
\end{gathered}
$$

Therefore, the six trigonometric functions are

$$
\begin{aligned}
& \sin \theta=\frac{\frac{\sqrt{7}}{3}}{1}=\frac{\sqrt{7}}{3} \\
& \cos \theta=\frac{x}{1}=x=-\frac{\sqrt{2}}{3} \\
& \tan \theta=\frac{\frac{\sqrt{7}}{3}}{x}=\frac{\frac{\sqrt{7}}{3}}{-\frac{\sqrt{2}}{3}}=-\sqrt{\frac{7}{2}}=-\frac{\sqrt{14}}{2} \\
& \csc \theta=\frac{1}{\frac{\sqrt{7}}{3}}=\frac{3}{\sqrt{7}}=\frac{3 \sqrt{7}}{7} \\
& \sec \theta=\frac{x}{1}=x=-\frac{3}{\sqrt{2}}=-\frac{3 \sqrt{2}}{2} \\
& \cot \theta=\frac{x}{\frac{\sqrt{7}}{3}}=\frac{-\frac{\sqrt{2}}{3}}{\frac{\sqrt{7}}{3}}=-\sqrt{\frac{2}{7}}=-\frac{\sqrt{14}}{7} .
\end{aligned}
$$

